Blind Source Separation Using Modified Contrast Function in Fast ICA Algorithm

نویسندگان

  • Alka Mahajan
  • Gajanan Birajdar
چکیده

A novel contrast function is proposed to be used in fastICA algorithm for Blind Source Separation (BSS). Simulation results show that the proposed nonlinear function used to separate image mixtures, results in faster execution and good quality image separation. Peak Signal to Noise Ratio (PSNR), Improved Signal to Noise Ratio (ISNR), Signal to Noise Ratio (SNR) and Root Mean Square Error (RMSE) are used to evaluate quality of separated images and Amari error is calculated to prove the performance of separation quality. General Terms Image Processing, Algorithms.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Modified Infomax ICA Algorithm for fMRI Data Source Separation

This study presents a modified infomax model of Independent Component Analysis (ICA) for the source separation problem of fMRI data. Functional MRI data is processed by different blind source separation techniques including Independent Component Analysis (ICA). ICA is a statistical decomposition method used for multivariate data source separation. ICA algorithm is based on independence of extra...

متن کامل

Convex Divergence ICA

Independent component analysis (ICA) is vital for unsupervised learning and blind source separation (BSS). The ICA unsupervised learning procedure attempts to demix the observation vectors and identify the salient features or mixture sources. This work presents a novel contrast function for evaluating the dependence among sources. A convex divergence measure is developed by applying the convex ...

متن کامل

Fast ICA for noisy data using Gaussian moments

A novel approach for the problem of estimating the data model of independent component analysis (or blind source separation) in the presence of gaussian noise is introduced. We de ne the gaussian moments of a random variable as the expectations of the gaussian function (and some related functions) with di erent scale parameters, and show how the gaussian moments of a random variable can be esti...

متن کامل

A family of fixed-point algorithms for independent component analysis

Independent Component Analysis (ICA) is a statistical signal processing technique whose main applications are blind source separation, blind deconvolution, and feature extraction. Estimation of ICA is usually performed by optimizing a 'contrast' function based on higher-order cumulants. In this paper, it is shown how almost any error function can be used to construct a contrast function to perf...

متن کامل

A Review of Independent Component Analysis (ICA) Based on Kurtosis Contrast Function

Independent component analysis (ICA) is a computational mehtod to solve blind source separation (BSS) problem. Different kinds of classic measure can be used for the estimation of nonGaussian sources by ICA. In this paper we review independent componenet analysis (ICA) technique based on Kurtosis contrast function. We briefly present the common independent component analysis algorithms that use...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010